Contribution of intracellular calcium and pH in ischemic uncoupling of cardiac gap junction channels formed of connexins 43, 40, and 45: a critical function of C-terminal domain

细胞内钙和 pH 对由连接蛋白 43、40 和 45 形成的心脏间隙连接通道缺血性解偶联的贡献:C 末端结构域的关键功能

阅读:7
作者:Giriraj Sahu, Amal Kanti Bera

Abstract

Ischemia is known to inhibit gap junction (GJ) mediated intercellular communication. However the detail mechanisms of this inhibition are largely unknown. In the present study, we determined the vulnerability of different cardiac GJ channels formed of connexins (Cxs) 43, 40, and 45 to simulated ischemia, by creating oxygen glucose deprived (OGD) condition. 5 minutes of OGD decreased the junctional conductance (Gj) of Cx43, Cx40 and Cx45 by 53±3%, 64±1% and 85±2% respectively. Reduction of Gj was prevented completely by restricting the change of both intracellular calcium ([Ca(2+)]i) and pH (pHi) with potassium phosphate buffer. Clamping of either [Ca(2+)]i or pHi, through BAPTA (2 mM) or HEPES (80 mM) respectively, offered partial resistance to ischemic uncoupling. Anti-calmodulin antibody attenuated the uncoupling of Cx43 and Cx45 significantly but not of Cx40. Furthermore, OGD could reduce only 26±2% of Gj in C-terminus (CT) truncated Cx43 (Cx43-Δ257). Tethering CT of Cx43 to the CT-truncated Cx40 (Cx40-Δ249), and Cx45 (Cx45-Δ272) helped to resist OGD mediated uncoupling. Moreover, CT domain played a significant role in determining the junction current density and plaque diameter. Our results suggest; OGD mediated uncoupling of GJ channels is primarily due to elevated [Ca(2+)]i and acidic pHi, though the latter contributes more. Among Cx43, Cx40 and Cx45, Cx43 is the most resistant to OGD while Cx45 is the most sensitive one. CT of Cx43 has major necessary elements for OGD induced uncoupling and it can complement CT of Cx40 and Cx45.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。