Pterostilbene could alleviate diabetic cognitive impairment by suppressing TLR4/NF-кB pathway through microbiota-gut-brain axis

紫檀芪通过抑制TLR4/NF-кB通路经菌群-肠-脑轴改善糖尿病认知障碍

阅读:8
作者:Zhi-Tong Zhang, Si-Min Deng, Chong Chen, Qing-Hui He, Xian-Wu Peng, Qing-Feng Liang, Guo-Dong Zhuang, Shu-Mei Wang, Dan Tang

Abstract

Diabetic cognitive impairment (DCI) is a serious neurodegenerative disorder caused by diabetes, with chronic inflammation being a crucial factor in its pathogenesis. Pterostilbene is a well-known natural stilbene derivative that has excellent anti-inflammatory activity, suggesting its potential medicinal advantages for treating DCI. Therefore, this study is to explore the beneficial effects of pterostilbene for improving cognitive dysfunction in DCI mice. A diabetic model was induced by a high-fat diet plus streptozotocin (40 mg·kg-1 ) for consecutive 5 days. After the animals were confirmed to be in a diabetic state, they were treated with pterostilbene (20 or 60 mg·kg-1 , i.g.) for 10 weeks. Pharmacological evaluation showed pterostilbene could ameliorate cognitive dysfunction, regulate glycolipid metabolism disorders, improve neuronal damage, and reduce the accumulation of β-amyloid in DCI mice. Pterostilbene alleviated neuroinflammation by suppressing oxidative stress and carbonyl stress damage, astrocyte and microglia activation, and dopaminergic neuronal loss. Further investigations showed that pterostilbene reduced the level of lipopolysaccharide, modulated colon and brain TLR4/NF-κB signaling pathways, and decreased the release of inflammatory factors, which in turn inhibited intestinal inflammation and neuroinflammation. Furthermore, pterostilbene could also improve the homeostasis of intestinal microbiota, increase the levels of short-chain fatty acids and their receptors, and suppress the loss of intestinal tight junction proteins. In addition, the results of plasma non-targeted metabolomics revealed that pterostilbene could modulate differential metabolites and metabolic pathways associated with inflammation, thereby suppressing systemic inflammation in DCI mice. Collectively, our study found for the first time that pterostilbene could alleviate diabetic cognitive dysfunction by inhibiting the TLR4/NF-κB pathway through the microbiota-gut-brain axis, which may be one of the potential mechanisms for its neuroprotective effects.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。