Endothelial FoxO proteins impair insulin sensitivity and restrain muscle angiogenesis in response to a high-fat diet

内皮 FoxO 蛋白会损害胰岛素敏感性并抑制高脂饮食引起的肌肉血管生成

阅读:4
作者:Emmanuel Nwadozi, Emilie Roudier, Eric Rullman, Sujeenthar Tharmalingam, Hsin-Yi Liu, Thomas Gustafsson, Tara L Haas

Abstract

Skeletal muscle microvascular dysfunction contributes to disease severity in type 2 diabetes. Recent studies indicate a role for Forkhead box O (FoxO) transcription factors in modulating endothelial cell phenotype. We hypothesized that a high-fat (HF) diet generates a dysfunctional vascular niche through an increased expression of endothelial FoxO. FoxO1 protein increased (+130%) in the skeletal muscle capillaries from HF compared to normal chow-fed mice. FoxO1 protein was significantly elevated in cultured endothelial cells exposed to the saturated fatty acid palmitate or the proinflammatory cytokine TNF-α. In HF-fed mice, endothelium-directed depletion of FoxO1/3/4 (FoxO(Δ)) improved insulin sensitivity (+110%) compared to that of the controls (FoxO(L/L)). The number of skeletal muscle capillaries increased significantly in the HF-FoxO(Δ) mice. Transcript profiling of skeletal muscle identified significant increases in genes associated with angiogenesis and lipid metabolism in HF-FoxO(Δ) vs. HF-FoxO(L/L) mice. HF-FoxO(Δ) muscle also was characterized by a decrease in inflammation-related genes and an enriched M2 macrophage signature. We conclude that endothelial FoxO proteins promote insulin resistance in HF diet, which may in part result from FoxO proteins establishing an antiangiogenic and proinflammatory microenvironment within skeletal muscle. These findings provide mechanistic insight into the development of microvascular dysfunction in the progression of type 2 diabetes.-Nwadozi, E., Roudier, E., Rullman, E., Tharmalingam, S., Liu, H.-Y., Gustafsson, T., Haas, T. L. Endothelial FoxO proteins impair insulin sensitivity and restrain muscle angiogenesis in response to a high-fat diet.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。