Characterization and Comparison of Contrast Imaging Properties of Naturally Isolated and Heterologously Expressed Gas Vesicles

天然分离和异源表达的气体囊泡的表征与对比成像特性

阅读:7
作者:Tingting Liu, Jieqiong Wang, Chenxing Liu, Yuanyuan Wang, Zhenzhou Li, Fei Yan

Abstract

Nanoscale ultrasound contrast agents have attracted considerable interest in the medical imaging field for their ability to penetrate tumor vasculature and enable targeted imaging of cancer cells by attaching to tumor-specific ligands. Despite their potential, traditional chemically synthesized contrast agents face challenges related to complex synthesis, poor biocompatibility, and inconsistent imaging due to non-uniform particle sizes. To address these limitations, bio-synthesized nanoscale ultrasound contrast agents have been proposed as a viable alternative, offering advantages such as enhanced biocompatibility, consistent particle size for reliable imaging, and the potential for precise functionalization to improve tumor targeting. In this study, we successfully isolated cylindrical gas vesicles (GVs) from Serratia. 39006 and subsequently introduced the GVs-encoding gene cluster into Escherichia coli using genetic engineering techniques. We then characterized the contrast imaging properties of two kinds of purified GVs, using in vitro and in vivo methods. Our results demonstrated that naturally isolated GVs could produce stable ultrasound contrast signals in murine livers and tumors using clinical diagnostic ultrasound equipment. Additionally, heterologously expressed GVs from gene-engineered bacteria also exhibited good ultrasound contrast performance. Thus, our study presents favorable support for the application of genetic engineering techniques in the modification of gas vesicles for future biomedical practice.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。