Overexpression of the β2AR gene improves function and re-endothelialization capacity of EPCs after arterial injury in nude mice

过表达β2AR基因改善裸鼠动脉损伤后EPCs的功能和再内皮化能力

阅读:5
作者:Xiao Ke, Xiao-Rong Shu, Fang Wu, Qing-Song Hu, Bing-Qing Deng, Jing-Feng Wang, Ru-Qiong Nie

Background

Proliferation and migration of endothelial progenitor cells (EPCs) play important roles in restoring vascular injuries. β2 adrenergic receptors (β2ARs) are widely expressed in many tissues and have a beneficial impact on EPCs regulating neoangiogenesis. The

Conclusions

The present study demonstrates that β2AR overexpression enhances EPC functions in vitro and enhances the vascular repair abilities of EPCs in vivo via the β2AR/Akt/eNOS pathway. Upregulation of β2AR gene expression through gene transfer may be a novel therapeutic target for endothelial repair.

Methods

Induction of endothelial injury was performed in male nude mice that were subjected to wire-mediated injury to the carotid artery. Human PB-derived EPCs were transfected with an adenovirus serotype 5 vector expressing β2AR (Ad5/β2AR-EPCs) and were examined 48 h later. β2AR gene expression in EPCs was detected by real-time polymerase chain reaction and Western blot analysis. In vitro, the proliferation, migration, adhesion, and nitric oxide production of Ad5/β2AR-EPCs were measured. Meanwhile, phosphorylated Akt and endothelial nitric oxide synthase (eNOS), which are downstream of β2AR signaling, were also elevated. In an in vivo study, CM-DiI-labeled EPCs were injected intravenously into mice subjected to carotid injury. After 3 days, cells recruited to the injury sites were detected by fluorescent microscopy, and the re-endothelialization was assessed by Evans blue dye.

Results

In vitro, β2AR overexpression augmented EPC proliferation, migration, and nitric oxide production and enhanced EPC adhesion to endothelial cell monolayers. In vivo, when cell tracking was used, the number of recruited CM-DiI-labeled EPCs was significantly higher in the injured zone in mice transfused with Ad5/β2AR-EPCs compared with non-transfected EPCs. The degree of re-endothelialization was also higher in the mice transfused with Ad5/β2AR-EPCs compared with non-transfected EPCs. We also found that the phosphorylation of Akt and eNOS was increased in Ad5/β2AR-EPCs. Preincubation with β2AR inhibitor (ICI118,551), Akt inhibitor (ly294002), or eNOS inhibitor (L-NAME) significantly attenuated the enhanced in vitro function and in vivo re-endothelialization capacity of EPCs induced by β2AR overexpression. Conclusions: The present study demonstrates that β2AR overexpression enhances EPC functions in vitro and enhances the vascular repair abilities of EPCs in vivo via the β2AR/Akt/eNOS pathway. Upregulation of β2AR gene expression through gene transfer may be a novel therapeutic target for endothelial repair.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。