Increased GVHD-related mortality with broad-spectrum antibiotic use after allogeneic hematopoietic stem cell transplantation in human patients and mice

人类患者和小鼠接受异基因造血干细胞移植后,使用广谱抗生素导致 GVHD 相关死亡率增加

阅读:5
作者:Yusuke Shono, Melissa D Docampo, Jonathan U Peled, Suelen M Perobelli, Enrico Velardi, Jennifer J Tsai, Ann E Slingerland, Odette M Smith, Lauren F Young, Jyotsna Gupta, Sophia R Lieberman, Hillary V Jay, Katya F Ahr, Kori A Porosnicu Rodriguez, Ke Xu, Marco Calarfiore, Hendrik Poeck, Silvia Caballe

Abstract

Intestinal bacteria may modulate the risk of infection and graft-versus-host disease (GVHD) after allogeneic hematopoietic stem cell transplantation (allo-HSCT). Allo-HSCT recipients often develop neutropenic fever, which is treated with antibiotics that may target anaerobic bacteria in the gut. We retrospectively examined 857 allo-HSCT recipients and found that treatment of neutropenic fever with imipenem-cilastatin and piperacillin-tazobactam antibiotics was associated with increased GVHD-related mortality at 5 years (21.5% for imipenem-cilastatin-treated patients versus 13.1% for untreated patients, P = 0.025; 19.8% for piperacillin-tazobactam-treated patients versus 11.9% for untreated patients, P = 0.007). However, two other antibiotics also used to treat neutropenic fever, aztreonam and cefepime, were not associated with GVHD-related mortality (P = 0.78 and P = 0.98, respectively). Analysis of stool specimens from allo-HSCT recipients showed that piperacillin-tazobactam administration was associated with perturbation of gut microbial composition. Studies in mice demonstrated aggravated GVHD mortality with imipenem-cilastatin or piperacillin-tazobactam compared to aztreonam (P < 0.01 and P < 0.05, respectively). We found pathological evidence for increased GVHD in the colon of imipenem-cilastatin-treated mice (P < 0.05), but no difference in the concentration of short-chain fatty acids or numbers of regulatory T cells. Notably, imipenem-cilastatin treatment of mice with GVHD led to loss of the protective mucus lining of the colon (P < 0.01) and the compromising of intestinal barrier function (P < 0.05). Sequencing of mouse stool specimens showed an increase in Akkermansia muciniphila (P < 0.001), a commensal bacterium with mucus-degrading capabilities, raising the possibility that mucus degradation may contribute to murine GVHD. We demonstrate an underappreciated risk for the treatment of allo-HSCT recipients with antibiotics that may exacerbate GVHD in the colon.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。