Delivery of chondroitinase by canine mucosal olfactory ensheathing cells alongside rehabilitation enhances recovery after spinal cord injury

犬粘膜嗅鞘细胞输送软骨素酶配合康复治疗可增强脊髓损伤后的恢复

阅读:6
作者:Jon Prager, Daisuke Ito, Darren R Carwardine, Prince Jiju, Divya M Chari, Nicolas Granger, Liang-Fong Wong

Abstract

Spinal cord injury (SCI) can cause chronic paralysis and incontinence and remains a major worldwide healthcare burden, with no regenerative treatment clinically available. Intraspinal transplantation of olfactory ensheathing cells (OECs) and injection of chondroitinase ABC (chABC) are both promising therapies but limited and unpredictable responses are seen, particularly in canine clinical trials. Sustained delivery of chABC presents a challenge due to its thermal instability; we hypothesised that transplantation of canine olfactory mucosal OECs genetically modified ex vivo by lentiviral transduction to express chABC (cOEC-chABC) would provide novel delivery of chABC and synergistic therapy. Rats were randomly divided into cOEC-chABC, cOEC, or vehicle transplanted groups and received transplant immediately after dorsal column crush corticospinal tract (CST) injury. Rehabilitation for forepaw reaching and blinded behavioural testing was conducted for 8 weeks. We show that cOEC-chABC transplanted animals recover greater forepaw reaching accuracy on Whishaw testing and more normal gait than cOEC transplanted or vehicle control rats. Increased CST axon sprouting cranial to the injury and serotonergic fibres caudal to the injury suggest a mechanism for recovery. We therefore demonstrate that cOECs can deliver sufficient chABC to drive modest functional improvement, and that this genetically engineered cellular and molecular approach is a feasible combination therapy for SCI.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。