Vitamin D Induces Global Gene Transcription in Human Corneal Epithelial Cells: Implications for Corneal Inflammation

维生素 D 诱导人类角膜上皮细胞的全局基因转录:对角膜炎症的影响

阅读:7
作者:Rose Y Reins, Fahmi Mesmar, Cecilia Williams, Alison M McDermott

Conclusions

Microarray analysis demonstrates that vitamin D regulates numerous genes in HCEC and influences TLR signaling through upregulation of IκBα. These findings are important in dissecting the role of vitamin D at the ocular surface and highlight the need for further research into the functions of vitamin D and its influence on corneal gene expression.

Methods

Telomerase-immortalized HCEC (hTCEpi) were stimulated with polyinosinic-polycytidylic acid (poly[I:C]) and 1,25-dihydroxyvitamin D3 (1,25D3) for 2 to 24 hours and interleukin (IL)-8 expression was examined by quantitative (q)PCR and ELISA. Telomerase-immortalized HCEC and SV40-HCEC were treated with 1,25D3 and used in genome-wide microarray analysis. Expression of target genes was validated using qPCR in both cell lines and primary HCEC. For confirmation of IκBα protein, hTCEpi were treated with 1,25D3 for 24 hours and cell lysates used in an ELISA.

Purpose

Our previous studies show that human corneal epithelial cells (HCEC) have a functional vitamin D receptor (VDR) and respond to vitamin D by dampening TLR-induced inflammation. Here, we further examined the timing of the cytokine response to combined vitamin D-TLR treatment and used genome-wide microarray analysis to examine the effect of vitamin D on corneal gene expression.

Results

Treatment with 1,25D3 increased poly(I:C)-induced IL-8 mRNA and protein expression after 2 to 6 hours. However, when cells were pretreated with 1,25D3 for 24 hours, 1,25D3 decreased cytokine expression. For microarray analysis, 308 genes were differentially expressed by 1,25D3 treatment in hTCEpi, and 69 genes in SV40s. Quantitative (q)PCR confirmed the vitamin D-mediated upregulation of target genes, including nuclear factor of κ light polypeptide gene enhancer in B-cells inhibitor, α (IκBα). In addition to increased transcript levels, IκBα protein was increased by 28% following 24 hours of vitamin D treatment. Conclusions: Microarray analysis demonstrates that vitamin D regulates numerous genes in HCEC and influences TLR signaling through upregulation of IκBα. These findings are important in dissecting the role of vitamin D at the ocular surface and highlight the need for further research into the functions of vitamin D and its influence on corneal gene expression.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。