Silencing of cysteine and serine rich nuclear protein 1 inhibits apoptosis, senescence and collagen degradation in human-derived vaginal fibroblasts in response to oxidative stress or DNA damage

沉默富含半胱氨酸和丝氨酸的核蛋白 1 可抑制人类阴道成纤维细胞在氧化应激或 DNA 损伤下的凋亡、衰老和胶原蛋白降解

阅读:26
作者:Jing Zhu, Hai-Nan Xu, Te Lin, Zhi-Jun Xia

Abstract

Pelvic organ prolapse (POP) is a group of diseases caused by extracellular matrix (ECM) degradation in pelvic supportive tissues. Cysteine and serine rich nuclear protein 1 (CSRNP1) is involved in cell proliferation and survival regulation, and reportedly facilitates collagen breakdown in human chondrocytes. The present study aimed to probe the effect of CSRNP1 on collagen metabolism in human-derived vaginal fibroblasts. High expression of CSRNP1 was found in POP patient-derived vaginal fibroblasts in comparison to normal-derived vaginal fibroblasts. Following functional experiments revealed that CSRNP1 overexpression led to proliferation inhibition, apoptosis and collagen degradation in normal vaginal fibroblasts. In line with this, silencing of CSRNP1 inhibited hydrogen peroxide (H2O2)-triggered apoptosis, ROS generation and collagen loss in normal vaginal fibroblasts. Silencing of CSRNP1 also reduced the expression of cell senescence markers p21 and γ-H2Ax (the histone H2Ax phosphorylated at Ser139), as well as curbed collagen breakdown in normal vaginal fibroblasts caused by a DNA damage agent etoposide. Transcriptomic analysis of vaginal fibroblasts showed that differentially expressed genes affected by CSRNP1 overexpression were mainly enriched in the Wnt signaling pathway. Treatment with a Wnt pathway inhibitor DKK1 blocked CSRNP1 knockdown-caused collagen deposition. Mechanistically, CSRNP1 was identified to be a target of Snail family transcriptional repressor 2 (SNAI2). Forced expression of CSRNP1 reversed the anti-apoptotic, anti-senescent and anti-collagen loss effects of SNAI2 in normal vaginal fibroblasts exposed to H2O2 or etoposide. Our study indicates that the SNAI2/CSRNP1 axis may be a key driver in POP progression, which provides a potential therapeutic strategy for POP.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。