Integrin αM promotes macrophage alternative M2 polarization in hyperuricemia-related chronic kidney disease

整合素αM促进高尿酸血症相关慢性肾脏病中的巨噬细胞替代M2极化

阅读:6
作者:Jing Liu, Fan Guo, Xiaoting Chen, Ping Fu, Liang Ma

Abstract

Hyperuricemia is an essential risk factor in chronic kidney disease (CKD), while urate-lowering therapy to prevent or delay CKD is controversial. Alternatively activated macrophages in response to local microenvironment play diverse roles in kidney diseases. Here, we aim to investigate whether and how macrophage integrin αM (ITGAM) contributes to hyperuricemia-related CKD. In vivo, we explored dynamic characteristics of renal tissue in hyperuricemia-related CKD mice. By incorporating transcriptomics and phosphoproteomics data, we analyzed gene expression profile, hub genes and potential pathways. In vitro, we validated bioinformatic findings under different conditions with interventions corresponding to core nodes. We found that hyperuricemia-related CKD was characterized by elevated serum uric acid levels, impaired renal function, activation of macrophage alternative (M2) polarization, and kidney fibrosis. Integrated bioinformatic analyses revealed Itgam as the potential core gene, which was associated with focal adhesion signaling. Notably, we confirmed the upregulated expression of macrophage ITGAM, activated pathway, and macrophage M2 polarization in injured kidneys. In vitro, through silencing Itgam, inhibiting p-FAK or p-AKT1 phosphorylation, and concurrent inhibiting of p-FAK while activating p-AKT1 all contributed to the modulation of macrophage M2 polarization. Our results indicated targeting macrophage ITGAM might be a promising therapeutic approach for preventing CKD.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。