Repurposing of a monoamine oxidase A inhibitor‑heptamethine carbocyanine dye conjugate for paclitaxel‑resistant non‑small cell lung cancer

单胺氧化酶 A 抑制剂-七甲碱羰花青染料结合物在治疗紫杉醇耐药非小细胞肺癌中的应用

阅读:7
作者:Xiao-Guang Yang #, Yan-Yu Li #, Dong-Xue Zhao, Wei Cui, Han Li, Xin-Yu Li, Yu-Xin Li, Dun Wang

Abstract

Non‑small cell lung cancer (NSCLC) remains an intractable disease, which is primarily due to tumor metastasis and the acquisition of resistance to chemotherapy. Therefore, there is an urgent need for novel therapeutics to overcome these obstacles. It was recently demonstrated that upregulated expression of monoamine oxidase A (MAOA) contributes to the progression of NSCLC. G10, a tumor‑targeting representative conjugate of heptamethine carbocyanine dye and an inhibitor of MAOA, was shown to exert potent cytotoxic effects, comparable to those of doxorubicin, against prostate cancer cell lines, as well as moderate MAOA inhibitory activity. The research described herein aimed to extend our previous study on the antitumor function of G10 in NSCLC in vitro and in vivo, and to elucidate the mechanisms through which G10 exerts its antineoplastic effects. G10 markedly inhibited the proliferation of paclitaxel‑resistant NSCLC cells (H460/PTX) and reduced tumor cell migration and invasion. Gene expression profiling of paclitaxel‑resistant NSCLC cells following treatment with G10 demonstrated that the expression of genes associated with the extracellular matrix was significantly affected, particularly the metastasis‑related genes matrix metallopeptidase (MMP)2, MMP14 and COL6A, which exhibited notably reduced expression. Additionally, the results also demonstrated that MAOA‑related pathways, including AKT and hypoxia‑inducible factor‑1α, were also inhibited by G10 treatment and, subsequently, the downstream molecules of these pathways, such as p21, MMP2 and vascular endothelial growth factor, were also downregulated, highlighting a possible mechanism through which G10 suppresses tumor cell migration, invasion and proliferation. Importantly, in mouse NSCLC xenografts, combined treatment with G10 and paclitaxel resulted in pronounced inhibition of tumor growth. Taken together, the results of the present study highlight the potential of G10 as a novel therapeutic targeting MAOA in paclitaxel‑resistant NSCLC.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。