Defective Association of the Platelet Glycoprotein Ib-IX Complex with the Glycosphingolipid-Enriched Membrane Domain Inhibits Murine Thrombus and Atheroma Formation

血小板糖蛋白 Ib-IX 复合物与富含糖鞘脂的膜结构域的缺陷结合可抑制小鼠血栓和动脉粥样硬化的形成

阅读:6
作者:Hao Zhou, Yali Ran, Qi Da, Tanner S Shaw, Dan Shang, Anilkumar K Reddy, José A López, Christie M Ballantyne, Jerry Ware, Huaizhu Wu, Yuandong Peng

Abstract

Localization of the platelet glycoprotein Ib-IX complex to the membrane lipid domain is essential for platelet adhesion to von Willebrand factor and subsequent platelet activation in vitro. Yet, the in vivo importance of this localization has never been addressed. We recently found that the disulfide linkage between Ibα and Ibβ is critical for the association of Ibα with the glycosphingolipid-enriched membrane domain; in this study, we established a transgenic mouse model expressing this mutant human Ibα that is also devoid of endogenous Ibα (HαSSMα(-/-)). Characterization of this model demonstrated a similar dissociation of Ibα from murine platelet glycosphingolipid-enriched membrane to that expressed in Chinese hamster ovary cells, which correlates well with the impaired adhesion of the transgenic platelets to von Willebrand factor ex vivo and in vivo. Furthermore, we bred our transgenic mice into an atherosclerosis-prone background (HαSSMα(-/-)ApoE(-/-) and HαWTMα(-/-)ApoE(-/-)). We observed that atheroma formation was significantly inhibited in mutant mice where fewer platelet-bound CD11c(+) leukocytes were circulating (CD45(+)/CD11c(+)/CD41(+)) and residing in atherosclerotic lesions (CD45(+)/CD11c(+)), suggesting that platelet-mediated adhesion and infiltration of CD11c(+) leukocytes may be one of the mechanisms. To our knowledge, these observations provide the first in vivo evidence showing that the membrane GEM is physiologically and pathophysiologically critical in the function of the glycoprotein Ib-IX complex.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。