Protective Effects of Bioactive Compound-Derived Nanoparticle Against Diabetic Retinopathy Through the Modulation of the NF-κB Signaling Pathway

生物活性化合物衍生的纳米颗粒通过调节 NF-κB 信号通路对糖尿病视网膜病变的保护作用

阅读:5
作者:Jianting Li, Ping Lv, Zhanzhan Xiao, Juan Xiao

Abstract

Diabetic retinopathy is a prevalent and severe microvascular complication of diabetes, often causing visual impairment and blindness in adults. This condition significantly impacts the quality of life for many diabetes patients worldwide. Berberine (BBR), a bioactive compound known for its effects on blood glucose levels, has shown promise in managing diabetic complications. However, the exact mechanism of how BBR influences the development of diabetic retinopathy remains unclear. In this study, we focused on synthesizing a formulation derived from BBR and assessing its protective effects against diabetic retinopathy. The formulation was created using a green synthesis method and thoroughly characterized. In vitro studies demonstrated the antioxidant activity of the formulation against 2,2-diphenyl-1-picryl-hydrazyl-hydrate. We also examined the NF-κB signaling pathway at a molecular level using real-time polymerase chain reaction. To mimic diabetic retinopathy in a controlled setting, a diabetic rat model was established through streptozotocin injection. The rats were divided into normal, diabetic, and treatment groups. The treatment group received the formulated treatment via intragastric administration for several weeks, while the other groups received normal saline. Evaluation of histopathological characteristics and microstructural changes in the retina using hematoxylin and eosin staining revealed that the bioactive compound-derived nanoparticle exhibited favorable biological, chemical, and physical properties. Treatment with the formulation effectively reduced oxidative stress induced by diabetes and inhibited the NF-κB signaling pathway in the diabetic rat model. Under high glucose conditions, oxidative stress was heightened, leading to mitochondria-dependent cell apoptosis in Müller cells via the activation of the NF-κB signaling pathway. The bioactive compound-derived formulation counteracted these effects by decreasing IκB phosphorylation, preventing NF-κB nuclear translocation, and deactivating the NF-κB signaling pathway. Furthermore, treatment with the bioactive compound-derived formulation mitigated retinal micro- and ultrastructural changes associated with diabetic retinopathy. These results indicate that the formulation protects against diabetic retinopathy by suppressing oxidative stress, reducing cell apoptosis, and deactivating the NF-κB signaling pathway. This suggests that the bioactive compound-derived formulation could be a promising therapeutic option for diabetic retinopathy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。