Multi-Spectroscopic Interrogation of the Spatial Linker Distribution in Defect-Engineered Metal-Organic Framework Crystals: The [Cu3 (btc)2-x (cydc)x ] Showcase

缺陷工程金属有机骨架晶体中空间连接子分布的多光谱检测:[Cu3 (btc)2-x (cydc)x ] 展示

阅读:5
作者:Miguel Rivera-Torrente, Matthias Filez, Florian Meirer, Bert M Weckhuysen

Abstract

In the past few years, defect-engineered metal-organic frameworks (DEMOFs) have been studied due to the plethora of textural, catalytic, or magnetic properties that can be enhanced by carefully introducing defect sites into the crystal lattices of MOFs. In this work, the spatial distribution of two different non-defective and defective linkers, namely 1,3,5-benzenetricarboxylate (BTC) and 5-cyano-1,3-benzenedicarboxylate (CYDC), respectively, has been studied in different DEMOF crystals of the HKUST-1 topology. Raman micro-spectroscopy revealed a nonhomogeneous distribution of defect sites within the [Cu3 (btc)2-x (cydc)x ] crystals, with the CYDC linker incorporated into defect-rich or defect-free areas of selected crystals. Additionally, advanced bulk techniques have shed light on the nature of the copper species, which is highly dynamic and directly affects the reactivity of the copper sites, as shown by probe molecule FTIR spectroscopy. Furthermore, electron microscopy revealed the effect of co-crystallizing CYDC and BTC on the crystal size and the formation of mesopores, further corroborated by X-ray scattering analysis. In this way we have demonstrated the necessity of utilizing micro-spectroscopy along with a whole array of bulk spectroscopic techniques to fully describe multicomponent metal-organic frameworks.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。