Endothelial-derived von Willebrand factor accelerates fibrin clotting within engineered microvessels

内皮来源的血管性血友病因子加速工程微血管内的纤维蛋白凝结

阅读:5
作者:Samuel G Rayner, Zackary Scholl, Christian J Mandrycky, Junmei Chen, Karina N LaValley, Peter J Leary, William A Altemeier, W Conrad Liles, Dominic W Chung, José A López, Hongxia Fu, Ying Zheng

Background

Von Willebrand factor (VWF) is classically associated with primary hemostasis and platelet-rich arterial thromboses, but recently has also been implicated in fibrin clotting and venous thrombosis. Direct interaction between fibrin and VWF may mediate these processes, although prior reports are conflicting. Objectives: We combined two complementary platforms to characterize VWF-fibrin(ogen) interactions and identify their potential physiologic significance.

Conclusions

We did not identify specific binding between fibrin(ogen) and VWF at a single-molecule level. Despite this, our results suggest that rapid release of endothelial VWF during clotting may provide a physical support for fibrin polymerization and accelerate thrombosis. This interaction may be of fundamental importance for the understanding and treatment of human thrombotic disease.

Methods

Engineered microvessels were lined with human endothelial cells, cultured under flow, and activated to release VWF and form transluminal VWF fibers. Fibrinogen, fibrin monomers, or polymerizing fibrin were then perfused, and interactions with VWF evaluated. Thrombin and fibrinogen were perfused into living versus paraformeldahyde-fixed microvessels and the pressure drop across microvessels monitored. Separately, protein binding to tethered VWF was assessed on a single-molecule level using total internal reflection fluorescence (TIRF) microscopy.

Results

Within microvessels, VWF fibers colocalized with polymerizing fibrin, but not fibrinogen. TIRF microscopy showed no colocalization between VWF and fibrinogen or fibrin monomers in a microfluidic flow chamber across a range of shear rates and protein concentrations. Thrombin-mediated fibrin polymerization within living microvessels triggered endothelial VWF release, increasing the rate and amount of microvessel obstruction compared to fixed vessels with an inert endothelium. Conclusions: We did not identify specific binding between fibrin(ogen) and VWF at a single-molecule level. Despite this, our results suggest that rapid release of endothelial VWF during clotting may provide a physical support for fibrin polymerization and accelerate thrombosis. This interaction may be of fundamental importance for the understanding and treatment of human thrombotic disease.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。