Skeletal muscle calpain acts through nitric oxide and neural miRNAs to regulate acetylcholine release in motor nerve terminals

骨骼肌钙蛋白酶通过一氧化氮和神经 miRNA 调节运动神经末梢中的乙酰胆碱释放

阅读:6
作者:Haipeng Zhu #, Bula Bhattacharyya #, Hong Lin, Christopher M Gomez

Abstract

Cholinergic overactivity in diseases of neuromuscular transmission elicits a retrograde signal resembling homeostatic synaptic plasticity that downregulates transmitter release. Understanding this compensatory pathway could provide insights into novel therapeutic avenues and molecular mechanisms underlying learning and memory. Here we identify nitric oxide as a possible source of this signal in pathological human and mouse muscle samples and link this signaling pathway to changes in synaptic function in the neuromuscular junction. We further show that neuronal nitric oxide synthase is regulated by cholinergic excess through activation of skeletal muscle calpain and its effect on Cdk5 and CaMKII, leading to direct modulation of presynaptic function. Finally, we show that this signaling pathway acts through specific miRNA control of presynaptic vesicle protein expression. The control of presynaptic miRNA levels by postsynaptic activity represents a novel mechanism for the modulation of synaptic activity in normal or pathological conditions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。