Disrupting sensitization of transient receptor potential vanilloid subtype 1 inhibits inflammatory hyperalgesia

破坏瞬时受体电位香草酸亚型 1 的敏化可抑制炎症痛觉过敏

阅读:7
作者:Michael J M Fischer, Joan Btesh, Peter A McNaughton

Abstract

Transient receptor potential vanilloid subtype 1 (TRPV1) is a heat-sensitive ion channel that plays a key role in enhanced pain sensation after inflammation, but directly blocking TRPV1 causes hyperthermia and decreased sensitivity to painful levels of heat in animals and humans. Here we explore an alternative analgesic strategy in which the modulation of TRPV1 is inhibited by antagonizing the interaction between TRPV1 and A kinase anchoring protein 79 (AKAP79), a scaffolding protein essential for positioning serine-threonine kinases adjacent to target phosphorylation sites. We first defined key residues in the domain in TRPV1 that interacts with AKAP79, and we then used this information to construct short peptides capable of preventing TRPV1-AKAP79 interaction. An effective peptide, when coupled to a TAT sequence conferring cell permeability, was found to be analgesic in three mouse models of inflammatory hyperalgesia. These results demonstrate the potential value of interfering with the interaction between TRPV1 and AKAP79 as a novel analgesic strategy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。