PET imaging of the influence of physiological and pathological α-synuclein on dopaminergic and serotonergic neurotransmission in mouse models

PET 成像显示生理和病理 α-突触核蛋白对小鼠模型中多巴胺能和血清素能神经传递的影响

阅读:5
作者:Elise Levigoureux, Caroline Bouillot, Thierry Baron, Luc Zimmer, Sophie Lancelot

Aims

Alpha-synuclein (α-syn) aggregation is a neuropathological hallmark of neurodegenerative synucleinopathies. This in vivo study explored glucose metabolism and dopaminergic and serotoninergic neurotransmission in KO α-syn, wild-type mice and an accelerated murine model of synucleinopathy (M83).

Conclusions

This PET study highlights an effect of α-syn modulation on the expression of the D2 receptor, whereas aggregated α-syn leads to overexpression of 5-HT1A receptor, as a pathophysiological signature.

Methods

MicroPET acquisitions were performed in all animals aged 5-6 months using five radiotracers exploring brain glucose metabolism ([18 F]FDG), dopamine neurotransmission ([11 C]raclopride, [11 C]PE2I) and serotonin neurotransmission ([18 F]MPPF, [11 C]DASB). For all radiotracers, except [18 F]FDG, PET data were analyzed with a MRI-based VOI method and a voxel-based analysis.

Results

MicroPET data showed a decrease in [11 C]raclopride uptake in the caudate putamen of KO α-syn mice, in comparison with M83 and WT mice, reflecting a lower concentration of D2 receptors. The increase in [18 F]MPPF uptake in M83 vs WT and KO mice indicates overexpression of 5-HT1A receptors. The lack of change in dopamine and serotonin transporters in all groups suggests unchanged neuronal density. Conclusions: This PET study highlights an effect of α-syn modulation on the expression of the D2 receptor, whereas aggregated α-syn leads to overexpression of 5-HT1A receptor, as a pathophysiological signature.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。