Conclusions
These findings are consistent with excess adipose glucocorticoid activity being a predisposing factor for the development of lipid (diacylglycerol-PKCε)-induced hepatic insulin resistance.
Methods
We tested this hypothesis in the adipose specific 11β-hydroxysteroid dehydrogenase-1 (HSD11B1) transgenic mouse, an established model of adipose glucocorticoid excess. Tissue specific insulin action was assessed by hyperinsulinemic-euglycemic clamps, hepatic lipid content was measured, hepatic insulin signaling was assessed by immunoblotting. The role of hepatic lipid content was further probed by administration of the functionally liver-targeted mitochondrial uncoupler, Controlled Release Mitochondrial Protonophore (CRMP). Findings: High fat diet fed HSD11B1 transgenic mice developed more severe hepatic insulin resistance than littermate controls (endogenous suppression of hepatic glucose production was reduced by 3.8-fold, P < 0.05); this was reflected by decreased insulin-stimulated hepatic insulin receptor kinase tyrosine phosphorylation and AKT serine phosphorylation. Hepatic insulin resistance was associated with a 53% increase (P < 0.05) in hepatic triglyceride content, a 73% increase in diacylglycerol content (P < 0.01), and a 66% increase in PKCε translocation (P < 0.05). Hepatic insulin resistance was prevented with administration of CRMP by reversal of hepatic steatosis and prevention of hepatic diacylglycerol accumulation and PKCε activation. Conclusions: These findings are consistent with excess adipose glucocorticoid activity being a predisposing factor for the development of lipid (diacylglycerol-PKCε)-induced hepatic insulin resistance.
