Ligand modulation of REV-ERBalpha function resets the peripheral circadian clock in a phasic manner

配体调节 REV-ERBalpha 功能以相位方式重置外周昼夜节律时钟

阅读:4
作者:Qing Jun Meng, Andrew McMaster, Stephen Beesley, Wei Qun Lu, Julie Gibbs, Derek Parks, Jon Collins, Stuart Farrow, Rachelle Donn, David Ray, Andrew Loudon

Abstract

The nuclear receptor REV-ERBalpha is a key negative-feedback regulator of the biological clock. REV-ERBalpha binds to ROR elements of the Bmal1 (Arntl) promoter and represses Bmal1 transcription. This stabilizing negative loop is important for precise control of the circadian pacemaker. In the present study, we identified a novel synthetic REV-ERBalpha ligand, which enhances the recruitment of nuclear receptor co-repressor (NCoR) to REV-ERBalpha. In order to explore REV-ERBalpha action on resetting responses of the molecular clock, we first established the rhythmic transcription profile and expression level of REV-ERBalpha in Rat-1 fibroblasts. When applied at different phases of the circadian oscillation to cell models containing stably transfected Bmal1::Luc or Per2::Luc, the REV-ERBalpha ligand induced phase-dependent bi-directional phase shifts. When the phase changes were plotted against time, a clear phase response curve was revealed, with a significant peak-to-trough amplitude of ca. 5 hours. The phase-resetting effect was also observed when the compound was applied to primary lung fibroblasts and ectopic lung slices from transgenic PER2::Luc mice. Therefore, similar regulation of REV-ERBalpha function by endogenous ligands, such as heme, is likely to be an important mechanism for clock resetting. In addition, we identify a new means to generate phasic shifts in the clock.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。