A novel rat model of inflammatory bowel disease developed using a device created with a 3D printer

使用 3D 打印机制造的设备开发的一种新型炎症性肠病大鼠模型

阅读:5
作者:Tomoko Kuriyama, Masayuki Yamato, Jun Homma, Yusuke Tobe, Katsutoshi Tokushige

Conclusion

The new model of TNBS-induced colitis, made with the aid of a device fabricated by 3D printing, generated ulcers that were reproducible in size. We anticipate that our new model of colitis will provide more reliable measures of treatment effects and prove useful in future studies of IBD therapies.

Objective

Inflammatory bowel disease (IBD) is an intractable condition. Existing models of experimental IBD are limited by their inability to create consistent ulcers between animals. The aim of this study was to develop a novel model of experimental colitis with ulcers of reproducible size. Design: We used a 3D printer to fabricate a novel device containing a small window (10 × 10 mm) that could be inserted rectally to facilitate the creation of a localized ulcer in the rat intestinal mucosa. The mucosa within the window of the device was exposed to 2,4,6-trinitrobenzene sulfonic acid (TNBS) to generate ulceration. We evaluated the effects of conventional drug therapies (mesalazine and prednisolone) and local transplantation of allogeneic adipose-derived mesenchymal stem cells (ASCs) on ulcer size (measured from photographic images using image analysis software) and degree of inflammation (assessed histologically).

Results

The novel method produced localized, circular or elliptical ulcers that were highly reproducible in terms of size and depth. The pathological characteristics of the lesions were similar to those reported previously for conventional models of TNBS-induced colitis that show greater variation in ulcer size. Ulcer area was significantly reduced by the administration of mesalazine or prednisolone as an enema or localized injection of ASCs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。