Tetrandrine ameliorates cognitive impairment via inhibiting astrocyte-derived S100B activation in a rat model of chronic cerebral hypoperfusion

粉防己碱通过抑制慢性脑灌注不足大鼠星形胶质细胞衍生的 S100B 激活来改善认知障碍

阅读:4
作者:Lianlian Chen, Lixue Chen, Yanling Lv, Zhiwei Cui, Gui Bei, Guangcheng Qin, Jiying Zhou, Tan Ge

Conclusion

Our results found that Tet could improve cognitive impairment in the chronic cerebral hypoperfusion rats. Tetrandrine may be a novel and promising candidate for future treatment and/or prevention of chronic cerebral hypoperfusion via inhibiting S100B activation and decreasing the expression of IL-1 beta, TNF-alpha, and iNOS in the hippocampal CA1 region.

Methods

Chronic cerebral hypoperfusion was induced by ligation of the bilateral common carotid arteries for 8 weeks. Rats were treated with Tet (10 mg/kg or 30 mg/kg) intraperitoneally every 3 days for 4 weeks. Cognitive function of rats was evaluated by the Morris water maze. Hematoxylin eosin (H & E) and Nissl staining were used to observe neuronal damage in the hippocampal CA1 region. Immunofluorescence, quantitative real-time polymerase chain reaction (QT-PCR), and western blot were performed to measure S100B, IL-1 beta, TNF-alpha, and iNOS levels in the CA1 region of chronic cerebral hypoperfusion rats.

Results

The Tet-treated group significantly decreased the escape latency of chronic cerebral hypoperfusion rats in finding the hidden platform (P <0.05). Compared with the 2-VO (two-vessel occlusion) group, more neurons with regular morphology and/or Nissl bodies in the hippocampus were observed in the Tet-treated group, suggesting attenuated neuronal damage and degeneration. Additionally, S100B, IL-1 beta, TNF-alpha, and iNOS levels were significantly (P <0.05) decreased in the CA1 region of the chronic cerebral hypoperfusion affected rats treated with Tet.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。