Crystalline silica-induced endoplasmic reticulum stress promotes the pathogenesis of silicosis by augmenting proinflammatory interstitial pulmonary macrophages

结晶二氧化硅诱导的内质网应激通过增强促炎间质肺巨噬细胞促进矽肺病的发病机制

阅读:4
作者:Haoyang Yuan, Yangyang He, Yuting Zhang, Hui Min, Jie Chen, Chao Li

Abstract

Crystalline silica (CS) particles are ubiquitously present in the environment, particularly in occupational settings, and exposure to respirable CS causes silicosis, imposing a significant disease burden. However, the pathogenesis of silicosis remains unclear. Exposure to external stimuli, such as CS, leads to the accumulation of unfolded proteins and triggers endoplasmic reticulum (ER) stress, disrupting tissue immune homeostasis and accelerating pathological progression. While pulmonary macrophages phagocytose CS particles to initiate the immune response, the role of ER stress in this process is unknown. Herein, we used a murine model of silicosis to simulate the pathological progression from acute inflammation to fibrosis in silicosis and conducted in vivo pharmacological inhibition of ER stress to explore the underlying mechanism. Using flow cytometry, we further classified pulmonary macrophages into monocyte-like macrophages (monocytes), interstitial macrophages (IMs), and alveolar macrophages (AMs). Our results showed that CS-induced ER stress primarily contributed to the augmentation of IMs and thereby exerted a significant impact on pulmonary macrophages. Despite coexpressing M1- and M2-like markers, IMs predominantly exhibited an M1-like polarization state and played a proinflammatory role by expressing the cytokines pro-IL-1β and TNF-α during the pathological progression of silicosis. Additionally, IMs recruited by CS-induced ER stress also exhibited high expression of MHCII and exerted active immunomodulatory effects. Overall, our study demonstrates that ER stress induced by CS particles triggers a proinflammatory immune microenvironment dominated by IMs and reveals novel insights into the pulmonary toxicological effects of CS particles.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。