Respiratory syncytial virus induces functional thymic stromal lymphopoietin receptor in airway epithelial cells

呼吸道合胞病毒诱导气道上皮细胞中功能性胸腺基质淋巴细胞生成素受体

阅读:5
作者:Michael M Miazgowicz, Molly S Elliott, Jason S Debley, Steven F Ziegler

Abstract

The epithelial-derived cytokine thymic stromal lymphopoietin (TSLP) plays a key role in the development and progression of atopic disease and has notably been shown to directly promote the allergic inflammatory responses that characterize asthma. Current models suggest that TSLP is produced by epithelial cells in response to inflammatory stimuli and acts primarily upon dendritic cells to effect a T helper type 2-type inflammatory response. Recent reports, however, have shown that epithelial cells themselves are capable of expressing the TSLP receptor (TSLPR), and may thus directly contribute to a TSLP-dependent response. We report here that beyond simply expressing the receptor, epithelial cells are capable of dynamically regulating TSLPR in response to the same inflammatory cues that drive the production of TSLP, and that epithelial cells produce chemokine C-C motif ligand 17, a T helper type 2-associated chemokine, in response to stimulation with TSLP. These data suggest that a direct autocrine or paracrine response to TSLP by epithelial cells may initiate the initial waves of chemotaxis during an allergic inflammatory response. Intriguingly, we find that the regulation of TSLPR, unlike TSLP, is independent of nuclear factor kappa-light-chain-enhancer of activated B cells, suggesting that the cell may be able to independently regulate TSLP and TSLPR levels in order to properly modulate its response to TSLP. Finally, we show evidence for this dynamic regulation occurring following the viral infection of primary epithelial cells from asthmatic patients. Taken together, the data suggest that induction of TSLPR and a direct response to TSLP by epithelial cells may play a novel role in the development of allergic inflammation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。