RECON gene disruption enhances host resistance to enable genome-wide evaluation of intracellular pathogen fitness during infection

RECON 基因破坏增强了宿主的抵抗力,从而能够在感染期间对细胞内病原体的适应性进行全基因组评估

阅读:8
作者:Chelsea E Stamm, Adelle P McFarland, Melissa N Locke, Hannah Tabakh, Qing Tang, Maureen K Thomason, Joshua J Woodward

Abstract

Transposon sequencing (Tn-seq) is a powerful genome-wide technique to assess bacterial fitness under varying growth conditions. However, screening via Tn-seq in vivo is challenging. Dose limitations and host restrictions create bottlenecks that diminish the transposon mutant pool being screened. Here, we have developed a murine model with a disruption in Akr1c13 that renders the resulting RECON-/- mouse resistant to high-dose infection. We leveraged this model to perform a Tn-seq screen of the human pathogen Listeria monocytogenes in vivo. We identified 135 genes which were required for L. monocytogenes growth in mice including novel genes not previously identified for host survival. We identified organ-specific requirements for L. monocytogenes survival and investigated the role of the folate enzyme FolD in L. monocytogenes liver pathogenesis. A mutant lacking folD was impaired for growth in murine livers by 2.5-log10 compared to wild type and failed to spread cell-to-cell in fibroblasts. In contrast, a mutant in alsR, which encodes a transcription factor that represses an operon involved in D-allose catabolism, was attenuated in both livers and spleens of mice by 4-log10 and 3-log10, respectively, but showed modest phenotypes in in vitro models. We confirmed that dysregulation of the D-allose catabolism operon is responsible for the in vivo growth defect, as deletion of the operon in the ∆alsR background rescued virulence. By undertaking an unbiased, genome-wide screen in mice, we have identified novel fitness determinants for L. monocytogenes host infection, which highlights the utility of the RECON-/- mouse model for future screening efforts. Importance: Listeria monocytogenes is the gram-positive bacterium responsible for the food-borne disease listeriosis. Although infections with L. monocytogenes are limiting in healthy hosts, vulnerable populations, including pregnant and elderly people, can experience high rates of mortality. Thus, understanding the breadth of genetic requirements for L. monocytogenes in vivo survival will present new opportunities for treatment and prevention of listeriosis. We developed a murine model of infection using a RECON-/- mouse that is restrictive to systemic L. monocytogenes infection. We utilized this model to screen for L. monocytogenes genes required in vivo via transposon sequencing. We identified the liver-specific gene folD and a repressor, alsR, that only exhibits an in vivo growth defect. AlsR controls the expression of the D-allose operon which is a marker in diagnostic techniques to identify pathogenic Listeria. A better understanding of the role of the D-allose operon in human disease may further inform diagnostic and prevention measures.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。