Conclusion
Acute exhaustive treadmill exercise is associated with impairment of cardiomyocyte Ca2+ handling and mitochondrial respiration that causes depression in both contraction and diastolic relaxation of cardiomyocytes.
Methods
Male Sprague-Dawley rats were assigned to sedentary controls or acute exhaustive endurance exercise consisting of a 120 minutes long forced treadmill run. The contractile function and Ca2+ handling properties in isolated cardiomyocytes, protein expression levels of sarcoplasmic reticulum Ca2+-ATPase and phospholamban including two of its phosphorylated states (serine 16 and threonine 17), and the mitochondrial respiration in permeabilized cardiac muscle fibers were analyzed.
Results
The exercise group showed a significant reduction in cardiomyocyte fractional shortening (right ventricle 1 Hz and 3 Hz p<0.001; left ventricle 1 Hz p<0.05), intracellular Ca2+ amplitude (right ventricle 1 and 3 Hz p<0.001; left ventricle 1 Hz p<0.01 and 3 Hz p<0.05) and rate of diastolic Ca2+ decay (right ventricle 1 Hz p<0.001 and 3 Hz p<0.01; left ventricle 1 and 3 Hz p<0.01). Cardiomyocyte relaxation during diastole was only significantly prolonged at 3 Hz in the right ventricle (p<0.05) compared to sedentary controls. We found an increase in phosphorylation of phospholamban at serine 16 and threonine 17 in the left (p<0.05), but not the right, ventricle from exhaustively exercised animals. The protein expression levels of sarcoplasmic reticulum Ca2+-ATPase and phospholamban was not changed. Furthermore, we found a reduction in maximal oxidative phosphorylation and electron transport system capacities of mitochondrial respiration in the right (p<0.01 and p<0.05, respectively), but not the left ventricle from rats subjected to acute exhaustive treadmill exercise.
