Acquired resistance to everolimus in aromatase inhibitor-resistant breast cancer

芳香化酶抑制剂耐药乳腺癌对依维莫司产生获得性耐药

阅读:5
作者:Mariko Kimura, Toru Hanamura, Kouki Tsuboi, Yosuke Kaneko, Yuri Yamaguchi, Toshifumi Niwa, Kazutaka Narui, Itaru Endo, Shin-Ichi Hayashi

Abstract

We previously reported the establishment of several types of long-term estrogen-depleted-resistant (EDR) cell lines from MCF-7 breast cancer cells. Type 1 EDR cells exhibited the best-studied mechanism of aromatase inhibitor (AI) resistance, in which estrogen receptor (ER) expression remained positive and PI3K signaling was upregulated. Type 2 EDR cells showed reduced ER activity and upregulated JNK-related signaling. The mTOR inhibitor everolimus reduced growth in cells similar to Type 1 EDR cells. The present study generated everolimus-resistant (EvR) cells from Types 1 and 2 EDR cells following long-term exposure to everolimus in vitro. These EvR cells modeled resistance to AI and everolimus combination therapies following first-line AI treatment failure. In Type 1 EvR cells, everolimus resistance was dependent on MAPK signaling; single agents were not effective, but hormonal therapy combined with a kinase inhibitor effectively reduced cell growth. In Type 2 EvR cells, ER expression remained negative and a JNK inhibitor was ineffective, but a Src inhibitor reduced cell growth. The mechanism of acquired everolimus resistance appears to vary depending on the mechanism of AI resistance. Strategies targeting resistant tumors should be tailored based on the resistance mechanisms, as these mechanisms impact therapeutic efficacy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。