Deep Learning Resolves Myovascular Dynamics in the Failing Human Heart

深度学习解决人类心脏衰竭中的肌血管动力学问题

阅读:5
作者:Anish Karpurapu, Helen A Williams, Paige DeBenedittis, Caroline E Baker, Simiao Ren, Michael C Thomas, Anneka J Beard, Garth W Devlin, Josephine Harrington, Lauren E Parker, Abigail K Smith, Boyla Mainsah, Michelle Mendiola Pla, Aravind Asokan, Dawn E Bowles, Edwin Iversen, Leslie Collins, Ravi Karr

Abstract

The adult mammalian heart harbors minute levels of cycling cardiomyocytes (CMs). Large numbers of images are needed to accurately quantify cycling events using microscopy-based methods. CardioCount is a new deep learning-based pipeline to rigorously score nuclei in microscopic images. When applied to a repository of 368,434 human microscopic images, we found evidence of coupled growth between CMs and cardiac endothelial cells in the adult human heart. Additionally, we found that vascular rarefaction and CM hypertrophy are interrelated in end-stage heart failure. CardioCount is available for use via GitHub and via Google Colab for users with minimal machine learning experience.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。