Methamphetamine-mediated endoplasmic reticulum (ER) stress induces type-1 programmed cell death in astrocytes via ATF6, IRE1α and PERK pathways

甲基苯丙胺介导的内质网 (ER) 应激通过 ATF6、IRE1α 和 PERK 通路诱导星形胶质细胞中的 1 型程序性细胞死亡

阅读:6
作者:Ankit Shah, Anil Kumar

Abstract

Methamphetamine (MA), a psychostimulant drug has been associated with a variety of neurotoxic effects which are thought to be mediated by induction of pro-inflammatory cytokines/chemokines, oxidative stress and damage to blood-brain-barrier. Conversely, the ER stress-mediated apoptosis has been implicated in several neurodegenerative diseases. However, its involvement in MA-mediated neurodegenerative effects remains largely unexplored. The present study was undertaken to assess the effect of MA on ER stress and its possible involvement in apoptosis. For this purpose, SVGA astrocytes were treated with MA, which induced the expressions of BiP and CHOP at both, mRNA and protein levels. This phenomenon was also confirmed in HFA and various regions of mouse brain. Assessment of IRE1α, ATF6 and PERK pathways further elucidated the mechanistic details underlying MA-mediated ER stress. Knockdown of various intermediate molecules in ER stress pathways using siRNA demonstrated reduction in MA-mediated CHOP. Finally, MA-mediated apoptosis was demonstrated via MTT assay and TUNEL staining. The involvement of ER stress in the apoptosis was demonstrated with the help of MTT and TUNEL assays in the presence of siRNA against various ER stress proteins. The apoptosis also involved activation of caspase-3 and caspase-9, which was reversed by knockdown with various siRNAs. Altogether, this is the first report demonstrating mechanistic details responsible for MA-mediated ER stress and its role in apoptosis. This study provides a novel group of targets that can be explored in future for management of MA-mediated cell death and MA-associated neurodegenerative disorders.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。