Multifunctionalized Reduced Graphene Oxide Biosensors for Simultaneous Monitoring of Structural Changes in Amyloid-β 40

多功能还原氧化石墨烯生物传感器用于同时监测淀粉样蛋白-β40的结构变化

阅读:10
作者:Dahye Jeong, Jinsik Kim, Myung-Sic Chae, Wonseok Lee, Seung-Hoon Yang, YoungSoo Kim, Seung Min Kim, Jin San Lee, Jeong Hoon Lee, Jungkyu Choi, Dae Sung Yoon, Kyo Seon Hwang

Abstract

Determination of the conformation (monomer, oligomer, or fibril) of amyloid peptide aggregates in the human brain is essential for the diagnosis and treatment of Alzheimer's disease (AD). Accordingly, systematic investigation of amyloid conformation using analytical tools is essential for precisely quantifying the relative amounts of the three conformations of amyloid peptide. Here, we developed a reduced graphene oxide (rGO) based multiplexing biosensor that could be used to monitor the relative amounts of the three conformations of various amyloid-β 40 (Aβ40) fluids. The electrical rGO biosensor was composed of a multichannel sensor array capable of individual detection of monomers, oligomers, and fibrils in a single amyloid fluid sample. From the performance test of each sensor, we showed that this method had good analytical sensitivity (1 pg/mL) and a fairly wide dynamic range (1 pg/mL to 10 ng/mL) for each conformation of Aβ40. To verify whether the rGO biosensor could be used to evaluate the relative amounts of the three conformations, various amyloid solutions (monomeric Aβ40, aggregated Aβ40, and disaggregated Aβ40 solutions) were employed. Notably, different trends in the relative amounts of the three conformations were observed in each amyloid solution, indicating that this information could serve as an important parameter in the clinical setting. Accordingly, our analytical tool could precisely detect the relative amounts of the three conformations of Aβ40 and may have potential applications as a diagnostic system for AD.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。