Chronic exposure of alcohol triggers microglia-mediated synaptic elimination inducing cognitive impairment

长期饮酒会引发小胶质细胞介导的突触消除,从而导致认知障碍

阅读:11
作者:Lihuan Lan, Hongxuan Wang, Xiaoni Zhang, Qingyu Shen, Xiangpen Li, Lei He, Xiaoming Rong, Jialing Peng, Jingjing Mo, Ying Peng

Aims

Long-term alcohol intake leads to cognitive impairment and dementia. The impairment of the cerebral cortex and limbic structures in alcoholics is associated with the loss of synapses instead of neurons. Synapse loss is considered to be an early and key feature of many neurodegenerative diseases, in which microglia-mediated synapse elimination is vital. However, the underlying mechanisms of synapse loss and cognitive impairment caused by long-term alcohol intake are still largely unknown.

Background and aims

Long-term alcohol intake leads to cognitive impairment and dementia. The impairment of the cerebral cortex and limbic structures in alcoholics is associated with the loss of synapses instead of neurons. Synapse loss is considered to be an early and key feature of many neurodegenerative diseases, in which microglia-mediated synapse elimination is vital. However, the underlying mechanisms of synapse loss and cognitive impairment caused by long-term alcohol intake are still largely unknown.

Conclusions

Our data suggests that TREM2 is associated with synaptic plasticity impairment and memory deficits, indicating microglia-mediated synaptic pruning might be the underlying mechanism involved in synapse loss and memory impairment induced by long-term alcohol intake. These findings provide new evidence for the receptor's participation in neurodegeneration diseases.

Methods

We investigated the relationship of synapse impairment, the microglial innate immune receptor-TREM2, and microglia-mediated synaptic elimination in long-term alcohol exposure.

Results

We found that long-term alcohol exposure increased expression of TREM2, decreased expression of synaptic proteins and glutamate receptor subunits, reduced dendrite spine density, and impaired long-term potentiation (LTP) in the hippocampus. Minocycline reduced the amount of the postsynaptic marker PSD95 in microglia, attenuated dendrite spine density loss, and slow down the forgetting process of already-formed memory. Furthermore, we found that TREM2 participated in microglia-mediated synapse elimination in chronic alcohol exposure in vivo. Significantly fewer PSD95 were detectable in microglial phagolysosomes in TREM2 knockdown mice. Besides, TREM2 gene silencing ameliorated synapse loss, LTP impairment, and forgetting of remote memories. Conclusions: Our data suggests that TREM2 is associated with synaptic plasticity impairment and memory deficits, indicating microglia-mediated synaptic pruning might be the underlying mechanism involved in synapse loss and memory impairment induced by long-term alcohol intake. These findings provide new evidence for the receptor's participation in neurodegeneration diseases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。