Development and Evaluation of a Fluorescent Antibody-Drug Conjugate for Molecular Imaging and Targeted Therapy of Pancreatic Cancer

用于胰腺癌分子成像和靶向治疗的荧光抗体-药物偶联物的开发和评估

阅读:6
作者:Steve Knutson, Erum Raja, Ryan Bomgarden, Marie Nlend, Aoshuang Chen, Ramaswamy Kalyanasundaram, Surbhi Desai

Abstract

Antibodies are widely available and cost-effective research tools in life science, and antibody conjugates are now extensively used for targeted therapy, immunohistochemical staining, or in vivo diagnostic imaging of cancer. Significant advances in site-specific antibody labeling technologies have enabled the production of highly characterized and homogenous conjugates for biomedical purposes, and some recent studies have utilized site-specific labeling to synthesize bifunctional antibody conjugates with both imaging and drug delivery properties. While these advances are important for the clinical safety and efficacy of such biologics, these techniques can also be difficult, expensive, and time-consuming. Furthermore, antibody-drug conjugates (ADCs) used for tumor treatment generally remain distinct from conjugates used for diagnosis. Thus, there exists a need to develop simple dual-labeling methods for efficient therapeutic and diagnostic evaluation of antibody conjugates in pre-clinical model systems. Here, we present a rapid and simple method utilizing commercially available reagents for synthesizing a dual-labeled fluorescent ADC. Further, we demonstrate the fluorescent ADC's utility for simultaneous targeted therapy and molecular imaging of cancer both in vitro and in vivo. Employing non-site-specific, amine-reactive chemistry, our novel biopharmaceutical theranostic is a monoclonal antibody specific for a carcinoembryonic antigen (CEA) biomarker conjugated to both paclitaxel and a near-infrared (NIR), polyethylene glycol modified (PEGylated) fluorophore (DyLight™ 680-4xPEG). Using in vitro systems, we demonstrate that this fluorescent ADC selectively binds a CEA-positive pancreatic cancer cell line (BxPC-3) in immunofluorescent staining and flow cytometry, exhibits efficient internalization kinetics, and is cytotoxic. Model studies using a xenograft of BxPC-3 cells in athymic mice also show the fluorescent ADC's efficacy in detecting tumors in vivo and inhibiting tumor growth more effectively than equimolar amounts of unconjugated drug. Overall, our results demonstrate that non-selective, amine-targeting chemistry is an effective dual-labeling method for synthesizing and evaluating a bifunctional fluorescent antibody-drug conjugate, allowing concurrent detection, monitoring and treatment of cancer.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。