Mitoferrin 2 deficiency prevents mitochondrial iron overload-induced endothelial injury and alleviates atherosclerosis

线粒体铁转运蛋白 2 缺乏可预防线粒体铁过载引起的内皮损伤并减轻动脉粥样硬化

阅读:7
作者:Dongchen Wang, Peng Ye, Chaohua Kong, Yuelin Chao, Wande Yu, Xiaomin Jiang, Jie Luo, Yue Gu, Shao-Liang Chen

Abstract

Endothelial dysfunction is an early step in the development of atherosclerotic cardiovascular disease. Iron overload can lead to excessive mitochondrial reactive oxygen species (mtROS) production, resulting in mitochondrial dysfunction and vascular endothelial cell (EC) damage. Mitoferrin 2 (Mfrn2) is an iron transporter in the inner mitochondrial membrane. This study aimed to assess whether Mfrn2 and mitochondrial iron overload were involved in atherosclerosis progression and to explore the potential mechanism. We observed significant upregulation of Mfrn2 in the arteries of high-fat diet (HFD)-fed Apolipoprotein E-/- (ApoE-/-) mice and in TNF-α-induced mouse aortic endothelial cells (MAECs). Mfrn2 gene silencing inhibited mitochondrial iron overload, stabilized mitochondrial membrane potential and improved mitochondrial function in TNF-α-induced MAECs. Vascular EC-specific knockdown of Mfrn2 in ApoE-/- mice markedly decreased atherosclerotic lesion formation and the levels of ICAM-1 in aortas and reduced monocyte infiltration into the vascular wall. Furthermore, TNF-α increased the binding of 14-3-3 epsilon (ε) and Mfrn2, preventing Mfrn2 degradation and leading to mitochondrial iron overload in ECs, while 14-3-3ε overexpression increased Mfrn2 stability by inhibiting its ubiquitination. Together, our results reveal that Mfrn2 deficiency attenuates endothelial dysfunction by decreasing iron levels within the mitochondria and mitochondrial dysfunction. These findings may provide new insights into preventive and therapeutic strategies against vascular endothelial dysfunction in atherosclerotic disease.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。