Branched-chain amino acids promote thrombocytopoiesis by activating mTOR signaling

支链氨基酸通过激活 mTOR 信号促进血小板生成

阅读:5
作者:Haojie Jiang, Lin Zhang, Mina Yang, Guoming Li, Chen Ding, Min Xin, Jing Dai, Xueqing Sun, Xuemei Fan, Haipeng Sun, Junling Liu, Yanyan Xu

Background

Megakaryocyte differentiation and platelet production disorders are the main causes of thrombocythemia and thrombocytopenia and lead to thrombosis or hemorrhage. Branched-chain amino acids (BCAAs) are essential nutrients that regulate important metabolic signals. BCAA administration could also increase platelet activation and promote the risk of thrombosis. Objectives: To unveil the role of BCAAs in thrombocytopoiesis.

Conclusion

We found that deficiency in BCAA catabolism led to the activation of p70S6K/mammalian target of rapamycin (mTOR) signaling, megakaryocyte over differentiation, and the acceleration of PPF. Activating BCAA metabolism with BT2 could inhibit mTOR signaling, reduce PPF, and ameliorate thrombocythemia in BCAA-fed mice. Therefore, this study reveals a novel role of BCAAs in megakaryocyte differentiation and platelet production, suggesting that targeting BCAA-mediated p70S6K/mTOR signaling may be a potential strategy for the treatment of thrombocytopenia or thrombocythemia.

Methods

BCAA-fed mice and megakaryocyte/platelet-specific branched-chain α-keto acid dehydrogenase E1α subunit-deficient mice were used to study the role of BCAAs in thrombocytopoiesis.

Results

In this study, we found that BCAA diet could facilitate megakaryocyte differentiation and platelet production. Meanwhile, megakaryocyte/platelet-specific branched-chain α-keto acid dehydrogenase E1α subunit-deficient mice developed thrombocythemia, which was mainly caused by the excessive differentiation of megakaryocytes and proplatelet biogenesis. Moreover, the use of BT2, the agonist of BCAA catabolism, could affect proplatelet formation (PPF) and megakaryocyte polyploidization, as well as ameliorating the thrombocythemia of BCAA-fed mice.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。