Erythropoietin Slows Photoreceptor Cell Death in a Mouse Model of Autosomal Dominant Retinitis Pigmentosa

促红细胞生成素减缓常染色体显性视网膜色素变性小鼠模型中的感光细胞死亡

阅读:5
作者:Tonia S Rex, Lorraine Kasmala, Wesley S Bond, Ana M de Lucas Cerrillo, Kristi Wynn, Alfred S Lewin

Conclusions

Systemic EPO-R76E slows death of the photoreceptors and vision loss in hP23H RHO+/-,mRHO+/+ mice. Treatment with EPO-R76E may widen the therapeutic window for retinal degeneration patients by increasing the number of viable cells. Future studies might investigate if co-treatment with EPO-R76E and gene replacement therapy is more effective than gene replacement therapy alone.

Methods

Ten-day old mice carrying one copy of human rhodopsin with the P23H mutation and both copies of wild-type mouse rhodopsin (hP23H RHO+/-,mRHO+/+) were injected into the quadriceps with recombinant adeno-associated virus (rAAV) carrying either enhanced green fluorescent protein (eGFP) or EpoR76E. Visual function (electroretinogram) and retina structure (optical coherence tomography, histology, and immunohistochemistry) were assessed at 7 and 12 months of age.

Purpose

To test the efficacy of systemic gene delivery of a mutant form of erythropoietin (EPO-R76E) that has attenuated erythropoietic activity, in a mouse model of autosomal dominant retinitis pigmentosa.

Results

The outer nuclear layer thickness decreased over time at a slower rate in rAAV.EpoR76E treated as compared to the rAAV.eGFP injected mice. There was a statistically significant preservation of the electroretinogram at 7, but not 12 months of age. Conclusions: Systemic EPO-R76E slows death of the photoreceptors and vision loss in hP23H RHO+/-,mRHO+/+ mice. Treatment with EPO-R76E may widen the therapeutic window for retinal degeneration patients by increasing the number of viable cells. Future studies might investigate if co-treatment with EPO-R76E and gene replacement therapy is more effective than gene replacement therapy alone.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。