Growth-promoting role of the miR-106a~363 cluster in Ewing sarcoma

miR-106a~363 簇在尤文氏肉瘤中的促生长作用

阅读:6
作者:Layne Dylla, Paul Jedlicka

Abstract

MicroRNAs (miRs) have been identified as potent regulators of both normal development and the hallmarks of cancer. Targeting of microRNAs has been shown to have preclinical promise, and select miR-based therapies are now in clinical trials. Ewing Sarcoma is a biologically aggressive pediatric cancer with little change in clinical outcomes despite improved chemotherapeutic regimens. There is a substantial need for new therapies to improve Ewing Sarcoma outcomes and to prevent chemotherapy-related secondary sequelae. Most Ewing Sarcoma tumors are driven by the EWS/Fli-1 fusion oncoprotein, acting as a gain-of-function transcription factor causing dysregulation of a variety of targets, including microRNAs. Our previous studies, and those of others, have identified upregulation of miRs belonging to the related miR-17~92a, miR-106b~25, and miR-106a~363 clusters in Ewing Sarcoma. However, the functional consequences of this have not been characterized, nor has miR blockade been explored as an anti-cancer strategy in Ewing Sarcoma. To simulate a potential therapeutic approach, we examined the effects of blockade of these clusters, and their component miRs. Using colony formation as a read-out, we find that blockade of selected individual cluster component miRs, using specific inhibitors, has little or no effect. Combinatorial inhibition using miR "sponge" methodology, on the other hand, is inhibitory to colony formation, with blockade of whole clusters generally more effective than blockade of miR families. We show that a miR-blocking sponge directed against the poorly characterized miR-106a~363 cluster is a particularly potent inhibitor of clonogenic growth in a subset of Ewing Sarcoma cell lines. We further identify upregulation of miR-15a as a downstream mechanism contributing to the miR-106a~363 sponge growth-inhibitory effect. Taken together, our studies provide support for a pro-oncogenic role of the miR-106a~363 cluster in Ewing Sarcoma, and identify miR-106a~363 blockade, as well as miR-15a replacement, as possible strategies for inhibition of Ewing Sarcoma growth.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。