lncRNA Ttc3-209 Promotes the Apoptosis of Retinal Ganglion Cells in Retinal Ischemia Reperfusion Injury by Targeting the miR-484/Wnt8a Axis

lncRNA Ttc3-209通过靶向miR-484 / Wnt8a轴促进视网膜缺血再灌注损伤中视网膜神经节细胞凋亡

阅读:10
作者:Ran Zhang, Yuqing Feng, Jinfang Lu, Yanni Ge, Huiling Li

Conclusions

Reducing the expression of lncRNA Ttc3-209 had a protective effect against apoptosis in RGCs. This may provide a new therapeutic option for the prevention of RGC apoptosis in response to RIR injury.

Methods

We created an ischemic model of RGCs by applying Hank's balanced salt solution containing 10 µM antimycin A and 2 µM calcium ionophore for 2 hours. RIR was induced in mice by elevating the intraocular pressure to 120 mm Hg for 1 hour by cannulation of the cornea; this was followed by reperfusion. Real-time quantitative PCR was used to detect the expression levels of long noncoding RNA (lncRNA), microRNA (miRNA), and target gene mRNA. Western blotting, flow cytometry, immunofluorescent staining, and TUNEL assays were performed to detect cell apoptosis. Dual-luciferase reporter assays and FISH were used to identify endogenous competitive RNA (ceRNA) mechanisms that link lncRNAs, miRNAs, and target genes. We also used scotopic electroretinography examinations to evaluate visual function in treated mice.

Purpose

Apoptosis of the retinal ganglion cells (RGCs) can cause irreversible damage to visual function after retinal ischemia reperfusion injury (RIR). Using a lncRNA chip assay, we selected lncRNA Ttc-209 and characterized its role in RGCs during ischemia reperfusion (I/R)-induced apoptosis.

Results

lncRNA Ttc3-209 was significantly upregulated after I/R injury and played a proapoptotic role in RGCs during I/R-induced apoptosis. Mechanistically, lncRNA Ttc3-209 is a ceRNA that competitively binds to miR-484 and upregulates the translation of its target (Wnt8a mRNA), thus promoting apoptosis in RGCs. Conclusions: Reducing the expression of lncRNA Ttc3-209 had a protective effect against apoptosis in RGCs. This may provide a new therapeutic option for the prevention of RGC apoptosis in response to RIR injury.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。