Dual-specificity phosphatases 13 and 27 as key switches in muscle stem cell transition from proliferation to differentiation

双特异性磷酸酶 13 和 27 是肌肉干细胞从增殖到分化的关键开关

阅读:6
作者:Takuto Hayashi, Shunya Sadaki, Ryosuke Tsuji, Risa Okada, Sayaka Fuseya, Maho Kanai, Ayano Nakamura, Yui Okamura, Masafumi Muratani, Gu Wenchao, Takehito Sugasawa, Seiya Mizuno, Eiji Warabi, Takashi Kudo, Satoru Takahashi, Ryo Fujita

Abstract

Muscle regeneration depends on muscle stem cell (MuSC) activity. Myogenic regulatory factors, including myoblast determination protein 1 (MyoD), regulate the fate transition of MuSCs. However, the direct target of MYOD in the process is not completely clear. Using previously established MyoD knock-in (MyoD-KI) mice, we revealed that MyoD targets dual-specificity phosphatase (Dusp) 13 and Dusp27. In Dusp13:Dusp27 double knock-out mice, the ability for muscle regeneration after injury was reduced. Moreover, single-cell RNA sequencing of MyoD-high expressing MuSCs from MyoD-KI mice revealed that Dusp13 and Dusp27 are expressed only in specific populations within MyoD-high MuSCs, which also express Myogenin. Overexpressing Dusp13 in MuSCs causes premature muscle differentiation. Thus, we propose a model where DUSP13 and DUSP27 contribute to the fate transition of MuSCs from proliferation to differentiation during myogenesis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。