Rescue of glutaric aciduria type I in mice by liver-directed therapies

肝脏导向疗法挽救小鼠 I 型戊二酸尿症

阅读:5
作者:Mercedes Barzi, Collin G Johnson, Tong Chen, Ramona M Rodriguiz, Madeline Hemmingsen, Trevor J Gonzalez, Alan Rosales, James Beasley, Cheryl K Peck, Yunhan Ma, Ashlee R Stiles, Timothy C Wood, Raquel Maeso-Diaz, Anna Mae Diehl, Sarah P Young, Jeffrey I Everitt, William C Wetsel, William R Lagor, Bea

Abstract

Glutaric aciduria type I (GA-1) is an inborn error of metabolism with a severe neurological phenotype caused by the deficiency of glutaryl-coenzyme A dehydrogenase (GCDH), the last enzyme of lysine catabolism. Current literature suggests that toxic catabolites in the brain are produced locally and do not cross the blood-brain barrier. In a series of experiments using knockout mice of the lysine catabolic pathway and liver cell transplantation, we uncovered that toxic GA-1 catabolites in the brain originated from the liver. Moreover, the characteristic brain and lethal phenotype of the GA-1 mouse model was rescued by two different liver-directed gene therapy approaches: Using an adeno-associated virus, we replaced the defective Gcdh gene or we prevented flux through the lysine degradation pathway by CRISPR deletion of the aminoadipate-semialdehyde synthase (Aass) gene. Our findings question the current pathophysiological understanding of GA-1 and reveal a targeted therapy for this devastating disorder.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。