Cell Size Critically Determines Initial Retention of Bone Marrow Mononuclear Cells in the Heart after Intracoronary Injection: Evidence from a Rat Model

细胞大小决定了冠状动脉注射后骨髓单核细胞在心脏内的初始保留时间:来自大鼠模型的证据

阅读:5
作者:Niall G Campbell, Masahiro Kaneko, Yasunori Shintani, Takuya Narita, Vinit Sawhney, Steven R Coppen, Kenta Yashiro, Anthony Mathur, Ken Suzuki

Abstract

Intracoronary injection of bone marrow mononuclear cells (BMMNC) is an emerging treatment for heart failure. Initial donor cell retention in the heart is the key to the success of this approach, but this process remains insufficiently characterized. Although it is assumed that cell size of injected cells may influence their initial retention, no scientific evidence has been reported. We developed a unique model utilizing an ex-vivo rat heart perfusion system, enabling quantitative assessment of retention of donor cells after intracoronary injection. The initial (5 minutes after intracoronary injection) retention rate of BMMNC was as low as approximately 20% irrespective of donor cell doses injected (1×106, 8×106, 4×107). Quantitative cell-size assessment revealed a positive relationship between the size of BMMNC and retention ratio; larger subpopulations of BMMNC were more preferentially retained compared to smaller ones. Furthermore, a larger cell type-bone marrow-derived mesenchymal stromal cells (median size = 11.5μm versus 7.0μm for BMMNC)-had a markedly increased retention rate (77.5±1.8%). A positive relationship between the cell size and retention ratio was also seen in mesenchymal stromal cells. Flow-cytometric studies showed expression of cell-surface proteins, including integrins and selectin-ligands, was unchanged between pre-injection BMMNC and those exited from the heart, suggesting that biochemical interaction between donor cells and host coronary endothelium is not critical for BMMNC retention. Histological analyses showed that retained BMMNC and mesenchymal stromal cells were entrapped in the coronary vasculature and did not extravasate by 60 minutes after transplantation. Whilst BMMNC did not change coronary flow after intracoronary injection, mesenchymal stromal cells reduced it, suggesting coronary embolism, which was supported by the histological finding of intravascular cell-clump formation. These data indicate that cell-size dependent, passive (mechanical), intravascular entrapment is responsible for the initial donor cell retention after intracoronary injection of BMMNC in the heart having normal vasculatures (at least).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。