Ferrostatin-1 Blunts Right Ventricular Hypertrophy and Dysfunction in Pulmonary Arterial Hypertension by Suppressing the HMOX1/GSH Signaling

Ferrostatin-1 通过抑制 HMOX1/GSH 信号传导来减轻肺动脉高压中的右心室肥大和功能障碍

阅读:5
作者:Jiawei Song, Yihang Chen, Yufei Chen, Siyuan Wang, Zhaojie Dong, Xinming Liu, Xueting Li, Zhenzhou Zhang, Lanlan Sun, Jiuchang Zhong

Abstract

Ferroptosis plays a critical role in pulmonary arterial hypertension (PAH)-induced right ventricular (RV) dysfunction, but key genes remain largely unclear. We here identified HMOX1 as an essential ferroptosis-related differentially expressed gene in PAH by bioinformatic analysis using FerrDb, GSE119754, and GSE3675 datasets, respectively. Notably, there were marked increases in HMOX1 and iron levels in RV of monocrotaline-induced PAH rats with reduced TAPSE levels. More importantly, treatment with ferrostatin-1 effectively attenuated RV hypertrophy, remodeling, myocardial fibrosis, and dysfunction in PAH rats. In cultured H9C2 cells and primary neonatal rat cardiomyocytes, pretreatment with ferrostatin-1 and knockdown HMOX1 by siRNA strikingly blunted hypoxia-induced promotion of lipid peroxidation, ferroptosis, and cardiomyocyte injury by potentiating glutathione (GSH) and nitric oxide signaling, respectively. In summary, ferrostatin-1 attenuates RV hypertrophy, fibrosis, and dysfunction in PAH by suppressing the HMOX1/GSH signaling. Targeting HMOX1 ferroptosis signaling functions as a potential therapeutic strategy for patients with PAH.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。