RECQ helicase RECQL4 participates in non-homologous end joining and interacts with the Ku complex

RECQ 解旋酶 RECQL4 参与非同源末端连接并与 Ku 复合物相互作用

阅读:4
作者:Raghavendra A Shamanna, Dharmendra Kumar Singh, Huiming Lu, Gladys Mirey, Guido Keijzers, Bernard Salles, Deborah L Croteau, Vilhelm A Bohr

Abstract

RECQL4, a member of the RecQ helicase family, is a multifunctional participant in DNA metabolism. RECQL4 protein participates in several functions both in the nucleus and in the cytoplasm of the cell, and mutations in human RECQL4 are associated with three genetic disorders: Rothmund-Thomson, RAPADILINO and Baller-Gerold syndromes. We previously reported that RECQL4 is recruited to laser-induced DNA double-strand breaks (DSB). Here, we have characterized the functional roles of RECQL4 in the non-homologous end joining (NHEJ) pathway of DSB repair. In an in vitro NHEJ assay that depends on the activity of DNA-dependent protein kinase (DNA-PK), extracts from RECQL4 knockdown cells display reduced end-joining activity on DNA substrates with cohesive and non-cohesive ends. Depletion of RECQL4 also reduced the end joining activity on a GFP reporter plasmid in vivo. Knockdown of RECQL4 increased the sensitivity of cells to γ-irradiation and resulted in accumulation of 53BP1 foci after irradiation, indicating defects in the processing of DSB. We find that RECQL4 interacts with the Ku70/Ku80 heterodimer, part of the DNA-PK complex, via its N-terminal domain. Further, RECQL4 stimulates higher order DNA binding of Ku70/Ku80 to a blunt end DNA substrate. Taken together, these results implicate that RECQL4 participates in the NHEJ pathway of DSB repair via a functional interaction with the Ku70/Ku80 complex. This is the first study to provide both in vitro and in vivo evidence for a role of a RecQ helicase in NHEJ.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。