Autophagy and Mitochondrial Dysfunction in Tenon Fibroblasts from Exfoliation Glaucoma Patients

剥脱性青光眼患者 Tenon 成纤维细胞的自噬和线粒体功能障碍

阅读:6
作者:Andrew Want, Stephanie R Gillespie, Zheng Wang, Ronald Gordon, Carlo Iomini, Robert Ritch, J Mario Wolosin, Audrey M Bernstein

Conclusions

Our results provide for the first time a link between XFS pathology to autophagy dysfunction, a major contributor to multiple age related diseases systemically throughout the body, in the brain and in the retina. A diminished capacity for degradation of denatured protein and aging cellular organelles may underpin the development of extracellular protein aggregates in XFS.

Methods

Fibroblasts derived from tenon tissue discards (TFs) from filtration surgery to relieve intraocular pressure in XFS patients were compared against age-matched TFs derived from surgery in primary open-angle glaucoma (POAG) patients or from strabismus surgery. Differential interference contrast light, and electron microscopy were used to examine structural cell features. Immunocytochemistry was used to visualize LOXL1 and Fibulin-5, lysosomes, endosomes, Golgi, and microtubules. Light scatter, Cyto-IDTM and JC1 flow cytometry were used to measure relative cell size, autophagic flux rate and mitochondrial membrane potential (MMPT), respectively. Enhanced autophagy was induced by serum withdrawal.

Purpose

To test the hypothesis that autophagy dysfunction is involved in exfoliation syndrome (XFS), a systemic disorder of extracellular elastic matrices that causes a distinct form of human glaucoma.

Results

In culture, XFS-TFs were 1.38-fold larger (by light scatter ratio, p = 0.05), proliferated 42% slower (p = 0.026), and were morphologically distinct in 2D and 3D culture compared to their POAG counterparts. In extended 3D cultures, XFS-TFs accumulated 8-10 times more Fibulin-5 than the POAG-TFs, and upon serum withdrawal, there were marked deficiencies in relocation of endosomes and lysosomes to the perinuclear area. Correspondingly, the XFS-TFs displayed significant accumulation of the autophagasome marker LC3 II (3.9 fold increase compared to POAG levels, p = 0.0001) and autophagic flux rate as measured by Cyto-ID dye was 53% lower in XFS-TFs than in POAG-TFs (p = 0.01), indicating reduced clearance of autophagasomes. Finally the percent of cells with diminished MMPT was 3-8 times larger in the XFS-TFs than in POAG-TFs (p = 0.02). Conclusions: Our results provide for the first time a link between XFS pathology to autophagy dysfunction, a major contributor to multiple age related diseases systemically throughout the body, in the brain and in the retina. A diminished capacity for degradation of denatured protein and aging cellular organelles may underpin the development of extracellular protein aggregates in XFS.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。