Differential Electrophysiological Responses to Odorant Isotopologues in Drosophilid Antennae

果蝇触角对气味同位素的不同电生理反应

阅读:6
作者:Efstathia Drimyli, Alexandros Gaitanidis, Klio Maniati, Luca Turin, Efthimios M C Skoulakis

Abstract

Olfaction presents the ultimate challenge to molecular recognition as thousands of molecules have to be recognized by far fewer olfactory receptors. We have presented evidence that Drosophila readily distinguish odorants based on their molecular vibrations using a battery of behavioral assays suggesting engagement of a molecular vibration-sensing component. Here we interrogate electrophysiologically the antennae of four Drosophilids and demonstrate conserved differential response amplitudes to aldehydes, alcohols, ketones, nitriles, and their deuterated isotopologues. Certain deuterated odorants evoked larger electroantennogram (EAG) amplitudes, while the response to the normal odorant was elevated in others. Significantly, benzonitrile isotopologues were not distinguishable as predicted. This suggests that isotopologue-specific EAG amplitudes result from differential activation of specific olfactory receptors. In support of this, odorants with as few as two deuteria evoke distinct EAG amplitudes from their normal isotopologues, and this is independent of the size of the deuterated molecule. Importantly, we find no evidence that these isotopologue-specific amplitudes depend on perireceptor mechanisms or other pertinent physical property of the deuterated odorants. Rather, our results strongly suggest that Drosophilid olfactory receptors are activated by molecular vibrations differentiating similarly sized and shaped odorants in vivo, yielding sufficient differential information to drive behavioral choices.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。