Reinforcement of single-walled carbon nanotubes on polydimethylsiloxane membranes for CO2, O2, and N2 permeability/selectivity

聚二甲基硅氧烷膜上单壁碳纳米管的增强,以提高 CO2、O2 和 N2 的渗透性/选择性

阅读:5
作者:Bassem Fareed Felemban, Sadia Sagar Iqbal, Ali Bahadar, Nazia Hossain, Abdul Jabbar

Abstract

In this study, PDMS incorporated with SWCNTs have been fabricated via solution casting method for industrial applications and characterized by the analyses of SEM, FTIR, TGA, AFM, and MST. The modified membranes were further analyzed for CO2, O2, and N2 gas permeability. The strategic membranes have five different weight ratios (0.013, 0.025, 0.038, 0.050, 0.063) compared to neat PDMS membranes. The even distribution of SWCNTs in PDMS provided results that showed improvement in thermal stability. However, mechanical strength has been weakened with increased concentration of nanofiller because of the increase in the number of SWCNTs by increases that imperfections become more severe. The designed polymeric membranes with good thermal stability and adequate mechanical strength can be used for the selectivity and permeability of CO2, O2, and N2 gases. The effect of the PDMS-SWCNTs on gas permeability has been studied. 0.063 wt.% SWCNTs presented the maximum permeability of CO2 gas while maximum O2 and N2 gas permeability have been obtained by 0.013 wt.% SWCNTs. The ideal selectivity of mixed (50:50) gas conditions has been tested. The maximum CO2/N2 ideal selectivity was obtained by 0.050 and 0.063 wt.% SWCNTs while maximum O2/N2 ideal selectivity obtained by 0.050 wt.% SWCNTs. Therefore, the fabrication of this novel SWCNTs-PDMS membrane may lead to separating the industrial exhaust and be used as a potential membrane for environmental remediation in the future.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。