mTORC1 dependent regulation of REDD1 protein stability

mTORC1 依赖的 REDD1 蛋白质稳定性调节

阅读:5
作者:Chia Yee Tan, Thilo Hagen

Abstract

REDD1 is known to be transcriptionally upregulated in hypoxia. During hypoxic stress, REDD1 plays an important role as a mediator of mTORC1 inhibition. REDD1 is also subject to highly dynamic transcriptional regulation in response to a variety of other stress signals. In addition, the REDD1 protein is highly unstable. However, it is currently not well understood how REDD1 protein stability is regulated. In this study, we discovered that mTORC1 regulates REDD1 protein stability in a 26S proteasome dependent manner. Inhibition of mTORC1 resulted in reduced REDD1 protein stability and a consequent decrease in REDD1 expression. Conversely, activation of the mTORC1 pathway increases REDD1 protein levels. We show that REDD1 degradation is not regulated by HUWE1, Cul4a or other Cullin E3 ubiquitin ligases. Our study shows that mTORC1 increases REDD1 protein stability and reveals a novel mTORC1-REDD1 feedback loop. This feedback mechanism may limit the inhibitory action of REDD1 on mTORC1.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。