Variable metastatic potentials correlate with differential plectin and vimentin expression in syngeneic androgen independent prostate cancer cells

不同的转移潜能与同基因雄激素非依赖性前列腺癌细胞中的差异网蛋白和波形蛋白表达相关

阅读:7
作者:Tanya C Burch, Megan T Watson, Julius O Nyalwidhe

Abstract

Prostate cancer is a clinically heterogeneous disease, ranging from indolent asymptomatic disease to very aggressive metastatic and life threatening forms of the disease. Distant metastasis represents the major lethal cause of prostate cancer. The most critical clinical challenge in the management of the patients is identifying those individuals at risk of developing metastatic disease. To understand the molecular mechanisms of prostate cancer metastasis and identify markers with metastatic potential, we have analyzed protein expression in two syngeneic prostate cancer cells lines PC3-N2 and PC3-ML2 using isobaric tags for relative and absolute quantitation labeling and multi-dimensional protein identification technology liquid chromatography matrix assisted laser desorption ionization tandem mass spectrometry. PC3-N2 is lowly metastatic while PC3-ML2 highly metastatic. A total of 1,756 proteins were identified in the analyses with 130 proteins showing different expression levels (p<0.01) in the two cell lines. Out of these, 68 proteins were found to be significantly up-regulated while 62 are significantly down-regulated in PC3-ML2 cells compared with PC3-N2 cells. The upregulation of plectin and vimentin which were the most significantly differentially expressed were validated by Western blot and their functional relevance with respect to invasion and migration was determined by siRNA gene silencing. To our knowledge, this study is the first to demonstrate that up-regulation of vimentin and plectin expression positively correlates with the invasion and metastasis of androgen-independent PCA.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。