Comparative transcriptomic and proteomic analyses reveal upregulated expression of virulence and iron transport factors of Aeromonas hydrophila under iron limitation

比较转录组学和蛋白质组学分析揭示了铁限制条件下嗜水气单胞菌的毒力和铁转运因子表达上调

阅读:5
作者:Tao Teng, Bingwen Xi, Kai Chen, Liangkun Pan, Jun Xie, Pao Xu

Background

Iron plays important roles in the growth, reproduction and pathogenicity of Aeromonas hydrophila. In this study, we detected and compared the mRNA and protein expression profiles of A. hydrophila under normal and iron restricted medium with 200 μM 2,2-Dipyridyl using RNA Sequencing (RNA-seq) and isobaric tags for relative and absolute quantification (iTRAQ) analyses.

Conclusion

Understanding the responses of pathogenic Aeromonas hydrophila within the hostile environment of the fish host, devoid of free iron, is important to reveal bacterial infection and pathogenesis. This study further confirmed the previous finding that iron-limitation efficiently enhanced the virulence of A. hydrophila using multi-omics analyses. We identified differentially expressed genes and proteins, related to enterobactin synthesis and virulence establishment, that play important roles in addressing iron scarcity.

Results

There were 1204 genes (601 up- and 603 down-regulated) and 236 proteins (90 up- and 146 down-regulated) shown to be differentially expressed, and 167 genes and proteins that showed consistent expression. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses revealed that the differentially expressed genes and proteins were mainly involved in iron ion transport, protein activity, energy metabolism and virulence processes. Further validation of the RNA-seq and iTRAQ results by quantitative real-time PCR (qPCR) revealed that 18 of the 20 selected genes were consistently expressed. The iron-ion absorption and concentration of A. hydrophila under iron-limited conditions were enhanced, and most virulence factors (protease activity, hemolytic activity, lipase activity, and swimming ability) were also increased. Artificial A. hydrophila infection caused higher mortality in cyprinid Megalobrama amblycephala under iron-limited conditions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。