Background
Advances in Molecular Therapy have made gene editing through systemic or topical administration of reagents a feasible strategy to treat genetic diseases in a rational manner. Encapsulation of therapeutic agents in nanoparticles can improve intracellular delivery of therapeutic agents, provided that the nanoparticles are efficiently taken up within the target cells. In prior work we had established proof-of-principle that nanoparticles carrying gene editing reagents can mediate site-specific gene editing in fetal and adult animals in vivo that
Conclusions
This is a first demonstration of improved nanoparticle uptake in epithelial cells using conjugation of target specific antibodies. Improved binding, uptake or specificity of particles delivered systemically or to the luminal surface of the airway would potentially improve efficacy, reduce the necessary dose and thus safety of administered therapeutic agents. Incremental improvement in the efficacy and safety of particle-based therapeutic strategies may allow genetic diseases such as cystic fibrosis to be cured on a fundamental genetic level before birth or shortly after birth.
