Human fetal cartilage-derived chondrocytes and chondroprogenitors display a greater commitment to chondrogenesis than adult cartilage resident cells

人类胎儿软骨衍生的软骨细胞和软骨祖细胞比成人软骨驻留细胞表现出更大的软骨形成能力

阅读:6
作者:Elizabeth Vinod, Ganesh Parasuraman, Jeya Lisha J, Soosai Manickam Amirtham, Abel Livingston, Jithu James Varghese, Sandya Rani, Deepak Vinod Francis, Grace Rebekah, Alfred Job Daniel, Boopalan Ramasamy, Solomon Sathishkumar

Abstract

Obtaining regeneration-competent cells and generating high-quality neocartilage are still challenges in articular cartilage tissue engineering. Although chondroprogenitor cells are a resident subpopulation of native cartilage and possess a high capacity for proliferation and cartilage formation, their potential for regenerative medicine has not been adequately explored. Fetal cartilage, another potential source with greater cellularity and a higher cell-matrix ratio than adult tissue, has been evaluated for sourcing cells to treat articular disorders. This study aimed to compare cartilage resident cells, namely chondrocytes, fibronectin adhesion assay-derived chondroprogenitors (FAA-CPCs) and migratory chondroprogenitors (MCPs) isolated from fetal and adult cartilage, to evaluate differences in their biological properties and their potential for cartilage repair. Following informed consent, three human fetal and three adult osteoarthritic knee joints were used to harvest the cartilage samples, from which the three cell types a) chondrocytes, b) FAA-CPCs, and MCPs were isolated. Assessment parameters consisted of flow cytometry analysis for percentage expression of cell surface markers, population doubling time and cell cycle analyses, qRT-PCR for markers of chondrogenesis and hypertrophy, trilineage differentiation potential and biochemical analysis of differentiated chondrogenic pellets for total GAG/DNA content. Compared to their adult counterparts, fetal cartilage-derived cells displayed significantly lower CD106 and higher levels of CD146 expression, indicative of their superior chondrogenic capacity. Moreover, all fetal groups demonstrated significantly higher levels of GAG/DNA ratio with enhanced uptake of collagen type 2 and GAG stains on histology. It was also noted that fetal FAA CPCs had a greater proliferative ability with significantly higher levels of the primary transcription factor SOX-9. Fetal chondrocytes and chondroprogenitors displayed a superior propensity for chondrogenesis when compared to their adult counterparts. To understand their therapeutic potential and provide an important solution to long-standing challenges in cartilage tissue engineering, focused research into its regenerative properties using in-vivo models is warranted.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。